A Wavelet Based Approach for Speaker Identification from Degraded Speech
نویسندگان
چکیده
This paper presents a robust speaker identification method from degraded speech signals. This method is based on the Mel-frequency cepstral coefficients (MFCCs) for feature extraction from the degraded speech signals and the wavelet transform of these signals. It is known that the MFCCs based speaker identification method is not robust enough in the presence of noise and telephone degradations. So, the feature extraction from the wavelet transform of the degraded signals adds more speech features from the approximation and detail components of these signals which assist in achieving higher identification rates. Neural Networks are used in the proposed method for feature matching. The Comparison study between the proposed method and the traditional MFCCs based feature extraction method from noisy speech signals and telephone degraded speech signals with additive white Gaussian noise (AWGN) and colored noise shows that the proposed method improves the recognition rates computed at different degradation cases.
منابع مشابه
A New Method for Speech Enhancement Based on Incoherent Model Learning in Wavelet Transform Domain
Quality of speech signal significantly reduces in the presence of environmental noise signals and leads to the imperfect performance of hearing aid devices, automatic speech recognition systems, and mobile phones. In this paper, the single channel speech enhancement of the corrupted signals by the additive noise signals is considered. A dictionary-based algorithm is proposed to train the speech...
متن کاملSpeaker Identification Using Admissible Wavelet Packet Based Decomposition
Mel Frequency Cepstral Coefficient (MFCC) features are widely used as acoustic features for speech recognition as well as speaker recognition. In MFCC feature representation, the Mel frequency scale is used to get a high resolution in low frequency region, and a low resolution in high frequency region. This kind of processing is good for obtaining stable phonetic information, but not suitable f...
متن کاملBilateral Weighted Fuzzy C-Means Clustering
Nowadays, the Fuzzy C-Means method has become one of the most popular clustering methods based on minimization of a criterion function. However, the performance of this clustering algorithm may be significantly degraded in the presence of noise. This paper presents a robust clustering algorithm called Bilateral Weighted Fuzzy CMeans (BWFCM). We used a new objective function that uses some k...
متن کاملSpeaker Adaptation in Continuous Speech Recognition Using MLLR-Based MAP Estimation
A variety of methods are used for speaker adaptation in speech recognition. In some techniques, such as MAP estimation, only the models with available training data are updated. Hence, large amounts of training data are required in order to have significant recognition improvements. In some others, such as MLLR, where several general transformations are applied to model clusters, the results ar...
متن کاملAutomatic language identification using wavelets
Spoken language identification consists in recognizing a language based on a sample of speech from an unknown speaker. The traditional approach for this task mainly considers the phonothactic information of languages. However, for marginalized languages –languages with few speakers or oral languages without a fixed writing standard–, this information is practically not at hand and consequently ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- IJCNIS
دوره 1 شماره
صفحات -
تاریخ انتشار 2009